Effect of Inlet Flow Characteristics on the Volume Fraction Distribution within a Severe Service Trim and the Valve Flow Coefficient

نویسندگان

  • Carlos Oliveira
  • Matthew Charlton
  • Rakesh Mishra
چکیده

It is well established that inlet flow characteristics may affect the performance of fluid handling systems considerably. This work focuses on the local flow analysis of a severe service control valve with a continuous resistance trim (CRT) operating under multiphase flow conditions and the effect of the inlet flow characteristics on the dispersed phase distribution within the trim and the valve flow coefficient Cv. Three dimensional CFD models, using both the mixture model and turbulence model komega SST, were used to simulate the flow within valve body and trim assembly under multiphase conditions. It is shown in this work that the dispersed phase distribution in the trim is strongly affected by the valve inlet conditions and thus affecting its performance. However, the valve flow coefficient is barely affected by the inlet flow conditions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Investigation of the Flow and Cavitation in a Butterfly Valve

Since knowledge on hydrodynamic torque of a butterfly valve is very important for butterfly valve design, its hydrodynamic torque is investigated in this paper. In reality, the investigation of the loss coefficient and torque from some experiments will take a long time and a lot of money. This paper presents a statistical study of the flow past the butterfly valve in a static analysis using com...

متن کامل

Dispersion Parameters and Effect of Impeller Speed, Holdup and Volume Fraction of Dispersed Phase on Separation Efficiency, Mass Transfer Coefficient of Dispersed Phase and Distribution Coefficient on Mixer-Settler Set

An experimental study has been conducted on the hydrodynamics of a stage mixer-settler to obtain an appropriate design. In this paper several tests was performed to investigate full factorial design of experiments. Since each test was repeated seven times, the repeatability of the test was confirmed (P=1 bar and T=25 °C). Sauter diameter was determined by photographing both the mix...

متن کامل

MHD Three-Dimensional Stagnation-Point Flow and Heat Transfer of a Nanofluid over a Stretching Sheet

In this study, the three-dimensional magnetohydrodynamic (MHD) boundary layer of stagnation-point flow in a nanofluid was investigated. The Navier–Stokes equations were reduced to a set of nonlinear ordinary differential equations using a similarity transform. The similarity equations were solved for three types of nanoparticles: copper, alumina and titania with water as the base fluid, to inve...

متن کامل

A CFD Simulation of the Parameters Affecting the Performance of Downhole De-oiling Hydrocyclone

Among the all parameters affecting the performance of a downhole de-oiling hydrocyclone, the investigation of internal flow field deserves more attempts especially in the petroleum industry. In this study, the effects of inlet flow rate, inlet oil volume fraction, and oil droplet diameter on the separation efficiency and pressure drop ratio have been investigated along the hydrocyclone body. Al...

متن کامل

Investigation of flow and heat transfer of nanofluid in a diverging sinusoidal channel

Using of nanofluids and ducts with corrugated walls are both supposed to enhance heat transfer, by increasing the heat transfer fluid conductivity and the heat transfer area respectively. Use of a diverging duct with a jet at inlet section may further increase heat transfer by creating recirculation zones inside the duct. In this work two-dimensional incompressible laminar flow of a nanofluid e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016